Clairauts sætning

I matematisk analyse siger Clairauts sætning, at, hvis en funktion

,

hvor , har kontinuerte partielle afledede af anden orden i hele , så gælder for alle og alle , at

Med andre ord, de partielle afledede af funktionen kommuterer i punktet . Sætningen er opkaldt efter den franske matematiker Alexis Clairaut.

MatematikSpire
Denne artikel om matematik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.