Fraktal
En fraktal er et matematisk objekt, som har mindst et af følgende karaktertræk:
- Den har detaljer på vilkårligt små skalaer.
- Den er for irregulær til at blive beskrevet i traditionelle geometriske termer. Dvs. den har en ikke heltallig dimension.
- Den er eksakt eller statistisk selv-similær.
- Dens Hausdorff- eller box-counting-dimension er fraktionel og højere end dens topologiske dimension.
- Den er defineret som værende rekursiv.
Der er for få eller ingen kildehenvisninger i denne artikel, hvilket er et problem. Du kan hjælpe ved at angive troværdige kilder til de påstande, som fremføres i artiklen.

Et lille udsnit af den matematiske fraktal Mandelbrot. Hvert punkts værdi fås ved at tælle antallet af iterationer indtil funktionsværdien passerer en fast valgt konstant værdi f.eks. 10. I billedet betyder sort, at funktionen i punktet aldrig ramte den valgte værdi. Farverne er lagt ved en afbildning fra punktiterationsværdier til farve.
Eksempler på fraktaler

Kystlinjen markeret ved højvandsopskyllede, røde feldspatkorn. Bodristranden, Korsika
- Mellem 1 og 2 dimensioner – "krøllet linje":
- Visse kystlinjer (f.eks. Norges) er fraktale. Jo mere detaljeret man måler kystlinjen jo længere er den. Kilde: matematiksider, fraktal Arkiveret 12. december 2003 hos Wayback Machine.
- Et lyn er fraktalt.
- Mellem 2 og 3 dimensioner – "krøllet overflade":
Fraktaltyper
- Mandelbrotmængden
- Juliamængden
- Sierpinski trekant
- Mandelbulb – en 3D analogi til Mandelbrotmængden
- Mengers svamp - 3D-fraktal, konstrueret i 1927
Litteratur
Se også
- Dimension
- Fraktale antenner
- Buddhabrot
.jpg.webp)
Juliamængden minder om Mandelbrots fraktal
![]() |
Wikimedia Commons har medier relateret til: |
| | Spire Denne artikel om matematik er en spire som bør udbygges. Du er velkommen til at hjælpe Wikipedia ved at udvide den. |
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.
